博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
python numpy sum函数用法
阅读量:5065 次
发布时间:2019-06-12

本文共 2247 字,大约阅读时间需要 7 分钟。

numpy.sum

numpy.
sum
(
a
axis=None
dtype=None
out=None
keepdims=False
)

Sum of array elements over a given axis.

Parameters:

a : array_like

Elements to sum.

axis : None or int or tuple of ints, optional

Axis or axes along which a sum is performed. The default (axis = None) is perform a sum over all the dimensions of the input array. axis may be negative, in which case it counts from the last to the first axis.

New in version 1.7.0.

If this is a tuple of ints, a sum is performed on multiple axes, instead of a single axis or all the axes as before.

dtype : dtype, optional

The type of the returned array and of the accumulator in which the elements are summed. By default, the dtype of a is used. An exception is when a has an integer type with less precision than the default platform integer. In that case, the default platform integer is used instead.

out : ndarray, optional

Array into which the output is placed. By default, a new array is created. If out is given, it must be of the appropriate shape (the shape of a with axis removed, i.e., numpy.delete(a.shape, axis)). Its type is preserved. See doc.ufuncs (Section “Output arguments”) for more details.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original arr.

Returns:

sum_along_axis : ndarray

An array with the same shape as a, with the specified axis removed. If a is a 0-d array, or if axis is None, a scalar is returned. If an output array is specified, a reference to out is returned.

See also

Equivalent method.
Cumulative sum of array elements.
Integration of array values using the composite trapezoidal rule.

Notes

Arithmetic is modular when using integer types, and no error is raised on overflow.

Examples

>>>
>>> np.sum([0.5, 1.5]) 2.0 >>> np.sum([0.5, 0.7, 0.2, 1.5], dtype=np.int32) 1 >>> np.sum([[0, 1], [0, 5]]) 6 >>> np.sum([[0, 1], [0, 5]], axis=0) #axis=0是按列求和 array([0, 6]) >>> np.sum([[0, 1], [0, 5]], axis=1) #axis=1 是按行求和 array([1, 5])

If the accumulator is too small, overflow occurs:

>>>
>>> np.ones(128, dtype=np.int8).sum(dtype=np.int8) -128

转载于:https://www.cnblogs.com/100thMountain/p/4719488.html

你可能感兴趣的文章
公网IP和私有IP的区别和用途
查看>>
在一台win10上启动多个mysql
查看>>
TensorFlow 从零到helloWorld
查看>>
@class、#import
查看>>
iOS 正则表达式使用的三种方式&语法
查看>>
kafka的使用
查看>>
AT2672 Coins
查看>>
团队计划会议-01
查看>>
Linux0.11内核--加载可执行二进制文件之1.copy_strings
查看>>
编写Nginx启停服务脚本
查看>>
这些老外的开源技术养活了很多国产软件
查看>>
看图软件推荐
查看>>
【IdentityServer4文档】- 欢迎来到 IdentityServer4
查看>>
安全测试的一些漏洞和测试方法
查看>>
spring框架学习笔记(八)
查看>>
vim格式化代码
查看>>
探索 ConcurrentHashMap 高并发性的实现机制
查看>>
Web服务器超时处理
查看>>
keil C 51 strlen库函数使用
查看>>
JS取得绝对路径
查看>>